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Abstract. We analyze the low energy spectrum of bound states of the N = 1 SU(2) SUSY Yang-Mills Theory
(SYM). This work continues the investigation of the non-perturbative properties of SYM by Monte Carlo
simulations in the Wilson discretization with dynamical gluinos. The dynamics of the gluinos is included
by the Two-Step Multi-Bosonic Algorithm (TSMB) for dynamical fermions. A new set of configurations
has been generated on a 163 · 32 lattice at β = 2.3 and κ = 0.194. The analysis also includes sets of
configurations previously generated on a smaller (123 · 24) lattice at κ = 0.1925, 0.194 and 0.1955. Guided
by predictions from low energy Lagrangians, we consider spin-1/2, scalar and pseudoscalar particles. The
spectrum of SYM is a challenging subject of investigation because of the extremely noisy correlators.
In particular, meson-like correlators contain disconnected contributions. The larger time-extension of the
163 ·32 lattice allows to observe two-state signals in the effective mass. Finite-volume effects are monitored
by comparing results from the two lattice sizes.

1 Introduction

The N = 1 SU(Nc) SUSY Yang-Mills (SYM) theory is the
simplest instance of a SUSY gauge theory and presently the
only one viable for large-scale numerical investigations. It
describes N2

c-1 gluons accompanied by an equal number of
fermionic partners (gluinos) in the same (adjoint) represen-
tation of the color group. Veneziano and Yankielowicz [1]
have shown how the assumption of confinement in combi-
nation with SUSY strongly constrains the low energy struc-
ture of the theory. The expected degrees of freedom domi-
nating the low energy regime are composite operators of the
gluon and gluino field which can be arranged into a chiral
superfield. These are: the gluino scalar and pseudoscalar bi-
linears λ̄λ, λ̄γ5λ, the corresponding gluonic quantities F 2,
F̃F , and the spin-1/2 gluino-glue operator trc[Fσλ]. How-
ever the program of including the purely gluonic operators
(“glueballs”) as dynamical degrees of freedom turns out to
be non trivial [2–5]. In [2,4,5] the Veneziano-Yankielowicz
low energy Lagrangian was extended so as to include all
the desired low energy states, which are arranged into two
Wess-Zumino supermultiplets. The authors of [3] pointed
out on the other hand, that fulfillment of the program
requires dynamical SUSY breaking and its consequent ab-
sence from the particle spectrum. In a situation where the
theoretical framework seems to be still unsettled, a first-
principles approach is welcome. This can be provided by
lattice computations.

Our goal is to verify the low energy spectrum of SYM in
the case of SU(2) gauge group by numerical techniques. By
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doing this we continue past projects, see [6] for a review.
The direct approach to the spectrum of SYM consists in
studying the time-dependence of correlators of operators
having the expected quantum numbers of the low-lying
particles. The simplest operators of this type are the glue-
ball, gluino-glue and mesonic operators also entering the
low energy Lagrangians. Since gluino bilinears and glueball
operators of the same parity carry the same (conserved)
quantum numbers of the theory, it is natural to expect
mixing among them [2]. We have to stress here that when
the dynamics of the gluinos is taken into account beyond
the valence picture, the disentanglement of the “unmixed”
states with identical quantum numbers is not possible: only
the mixed physical states can be the object of investiga-
tion.1 The result is the determination of the mass of the
lightest particle with the same quantum numbers of the
projecting operator: from this point of view glueball and
mesonic operators are equivalent.

The action is discretized in the Wilson fashion [7]2
where, however, the gluino is a Majorana spinor in the
adjoint representation:

S = SG[U ] + Sf

[
U, λ̄, λ

]
; (1)

1 In order to avoid confusion with the mass pattern of QCD
we refrain to associate any name to the particle states of SYM
and will refer to them according to their quantum numbers
(spin and parity).

2 First simulations with domain wall fermions were performed
in [8].
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SG[U ] is the usual plaquette action and

Sf

[
U, λ̄, λ

]
=

1
2

∑
x

λ̄(x)λ(x) (2)

− κ

2

∑
x

∑
µ

[
λ̄(x + µ̂)Vµ(x)(r + γµ)λ(x)

+ λ̄(x)V T
µ (x)(r − γµ)λ(x + µ̂)] ;

r is the Wilson parameter set to r = 1 in our case. The
gluino field satisfies the Majorana condition

λ = λC = Cλ̄T , (3)

where the charge conjugation in the spinorial representa-
tion is C = γ0γ2; the gauge link in the adjoint representa-
tion reads:

[Vµ(x)]ab ≡ 2 tr[U†
µ(x)T aUµ(x)T b]

=
[
V ∗

µ (x)
]
ab

=
[
V T

µ (x)
]−1

ab
, (4)

where T a are the generators of the color group.
The dynamics of the gluinos is included by adopting the

two-step multi-bosonic algorithm (TSMB) for dynamical
fermions [9]. The algorithm has the nice feature of accom-
modating any, even fractional, number of flavors. This is
required for SYM since, schematically, the gluino has only
half of the degrees of freedom of a Dirac fermion and con-
sequently the fermion measure contains the square root of
the fermion determinant: this corresponds to Nf = 1/2.
In addition (cf. [10] for details) the design of TSMB is op-
timized to deal with light fermionic degrees of freedom, a
critical factor when approaching the SUSY limit. Tests of
the algorithm performance in QCD for light quark masses
can be found in [11].

In the Wilson discretization SUSY is broken in a two-
fold way: explicitly by the Wilson term ensuring the correct
balance between fermionic and bosonic degrees of freedom
in the continuum limit, and softly by the gluino mass term.
On the basis of the Ward identities [7, 12, 13], SUSY is
expected to be recovered in the continuum limit by tun-
ing the gluino mass to zero. (The situation is perfectly
analogous to that of QCD, where chirality is recovered by
tuning the quark mass to zero). However, O(a) and O(mg̃)
SUSY violating effects are expected to distort the SUSY
pattern in practical situations. A systematic analytical ex-
pansion in the gluino mass is missing in SYM; therefore it
is not obvious how to set the scale for the O(mg̃) breaking
(something analogous to Λχ = 4πfπ in chiral perturbation
theory). The only possibility, at least for the moment, to
gain some information on the effective “heaviness” of the
gluino is to force analogy with QCD. Needless to say, this
procedure is only of heuristic value. The strategy we adopt
is to gradually increase the hopping parameter κ in the
Wilson action at fixed value of the gauge coupling β = 2.3
corresponding to a fairly small lattice size in QCD units
(a ≈ 0.06 fm), pushing the simulation towards a lighter
and lighter gluino.

First large scale simulations of SYM were performed
in [10] on a 123·24 for κ = 0.1925. New sets of configurations

were produced in [13] for κ = 0.194, 0.1955. We now turn
to a 163 ·32 lattice, whose larger time extension allows for a
better analysis of the spectrum. We consider here κ = 0.194
(simulations at κ = 0.1955, 0.196 are in progress). The
larger space extension allows us to monitor finite-volume
effects in the spectrum.

The spectrum of SYM is challenging from the point
of view of numerical analysis. The signal for the corre-
lators of purely gluonic operators vanishes very rapidly
(ideally one should use anisotropic lattices). The mixed
gluonic-fermionic operators, typical for SUSY models, re-
ceive substantial fluctuations from the gluonic content. A
better asymptotic behavior of the effective mass, however,
can be obtained by combined smearing of the fermionic and
gluonic degrees of freedom. Finally for mesonic operators,
special techniques are required for the disconnected term
in the correlator. Here we employ stochastic estimators
(SET) [14]. Also, we apply an improved version [15] of the
volume source technique (VST) [16]. For fermions in the
real representation of the gauge group, as is the case for
SYM, the original formulation in [16] cannot be used. The
two independent techniques were tested in a comparative
study for SYM in [15].

A description and some results of this study have been
reported in [17].

The plan of the paper is as follows. In Sect. 2 we re-
port details of the simulations and characterize the gauge
sample, using analogy with QCD, by the Sommer scale
parameter r0 and the pseudo-pion mass; the gluino mass is
obtained from the soft-breaking term in the SUSY Ward
identities; Sect. 3 contains methodology and results for the
spectrum; in Sect. 4 we discuss results and indicate possible
directions of improvement.

2 The gauge sample

The gauge configurations were generated by the two-step
multi-bosonic algorithm for dynamical gluinos [9]. We refer
to [10] for a description of the algorithm. Table 1 reports
an overview of the β = 2.3 ensembles used in this work;
the set on the 163 · 32 lattice with κ = 0.194 was newly
generated. The setup of the TSMB was as follows. The
local part of the updating procedure (one cycle) consisted
of two steps of heat bath for the bosonic fields followed by
two steps of over-relaxation; the updating for the gauge
sector was obtained by 36 Metropolis sweeps. At the end
of each cycle an accept-reject test was performed on the
gauge configuration, along the lines of the general procedure
described in [10]. Every five cycles a global heat-bath step
was applied on the bosonic fields. The typical condition
number of the squared hermitian fermion matrix was ∼
104. The integrated autocorrelation time for the smallest
eigenvalue was ∼ 240 cycles.

2.1 Static potential, string tension
and Sommer scale parameter

We measured the potential between heavy sources in the
fundamental representation. The results on the larger 163 ·
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Table 1. Overview of the ensembles used in this work with determination of Som-
mer scale parameter and string tension. The fourth and fifth column, respectively,
report the total number of configurations and of update cycles at equilibrium,
the sixth column the number of replica lattices

reference Ls κ Nconfig Ncycle Nlat r0/a a
√

σ

[10] 8 0.19 20768 1038400 32 5.41(28) [10] 0.22(1)
[10] 12 0.1925 4320 216000 9 6.71(19) [13] 0.176(4)
[13] 12 0.194 2034 42030 9 7.37(30) [13] 0.160(6)
this study 16 0.194 3890 25650 4 7.16(25) 0.165(9)
[13] 12 0.1955 4272 65832 8 7.98(48) [13] 0.147(8)
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)

Fig. 1. Static potential between heavy sources in the funda-
mental representation on the 163 · 32 lattice, κ = 0.194; the
line is the fit with lattice formulae

32 lattice confirm the picture of confinement found in [10],
see Fig. 1. The Sommer scale parameter r0 and the string
tension

√
σ were measured by fitting the potential with the

lattice formula [18]

V (r) = V0 + σr − 4πe

∫ π

−π

d3k

(2π)3
cos(k · r)

4
∑3

j=1 sin2(kj/2)
; (5)

r0 is given by

r0 =

√
1.65 − e

σ
. (6)

The results are reported in Table 1.
Comparing the results on the two lattices, no finite-

size effect beyond statistical uncertainty is visible in the
Sommer scale parameter and the string-tension. Similarly
to QCD, the Sommer scale parameter displays a sizeable
gluino-mass dependence. A linear extrapolation to zero
gluino mass is performed in the next subsection.

2.2 Massless gluino limit

In QCD the massless quark limit can be determined by
inspection of the pion mass or use of the chiral Ward iden-
tities. In contrast, in SYM the U(1) chiral symmetry is
anomalous and the particle with the quantum numbers
of the chiral current (namely the pseudoscalar particle)
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Fig. 2. The gluino mass as obtained from the SUSY Ward
identities as a function of the time separation between current
and insertion operator on the 163 · 32 lattice, κ = 0.194. The
lines indicate bounds of the fit

picks up a mass by the anomaly. However, theoretical ar-
guments [1] (cf. also the discussion in [12]) support the pic-
ture that the anomaly is originated by OZI-rule violating
diagrams, while the remaining ones determine spontaneous
breaking of the chiral symmetry. The diagrams of the pseu-
doscalar correlator respecting the OZI-rule give rise to the
connected (one loop) term, corresponding in QCD to the
pion-correlator. The analogy with QCD suggests the name
“adjoint-pion” (a−π) for the associated pseudoparticle: in
the above picture this is expected to be a soft-mode of the
theory, the corresponding mass disappearing for mg̃ → 0.

The gluino mass can be directly determined by study-
ing the lattice SUSY Ward identities [7,12,13], where the
former enters the soft breaking term. We refer to [13] for the
illustration of the method and discussion of theoretical as-
pects. One can determine the combination aZ−1

S mg̃ where
ZS is the renormalization constant of the SUSY current,
which is expected to be a (finite) function of the gauge
coupling only. This quantity was determined in [13] for the
123 · 24 lattice. We repeat here the computation for the
163 ·32 lattice. The results are reported in Fig. 2, where the
gluino mass is plotted against the time separation between
current and insertion operator in the SUSYWard identities.
Compared to the 123 ·24 case of [13], the plateau establishes
for larger values of the time separation (five compared to
three); unfortunately, at these time separations the quality
of the signal is already quite deteriorated. Table 2 contains
the determinations of aZ−1

S mg̃ and ama−π in present and
past works. Comparison of 123 · 24 and 163 · 32 results at
κ = 0.194 reveals a sizeable finite volume effect for the
adjoint-pion mass. It should be noted that the sign of the
effect is opposite to the usual one (however this is no phys-
ical mass). The gluino mass comes in larger on the larger
lattice, however within a 1-σ effect.
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Table 2. Quantities determined in this and previous studies: the adjoint-pion mass,
gluino mass from SUSY Ward identities (with local SUSY current, insertion operator
χ(sp), cf. Table 5 in [13]), spin-1/2, 0+ and 0− bound state masses

Ls κ ama−π aZ−1
S mg̃ spin-1/2 0+(glueb.) 0−(λ̄γ5λ)

8 0.19 0.71(2) [10]
12 0.1925 0.550(1) 0.166(6) [13] 0.33(4) 0.53(10) [20] 0.52(10) [20]
12 0.194 0.470(4) 0.124(6) [13] 0.49(4) 0.40(11) 0.42(1)
16 0.194 0.484(1) 0.137(7) 0.43(1) 0.52(2)
12 0.1955 0.253(4) 0.053(4) [13] 0.35(4) 0.36(4) 0.24(2)
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Fig. 3. The gluino mass from the SUSY Ward identities and
the squared adjoint-pion mass ma−π as a function of 1/κ (from
the present and past studies [10,13]); aZ−1

S mg̃ on the 123 · 24
lattice (triangles), the same quantity on the 163 · 32 lattice
(star); squared adjoint-pion mass on 83 · 16 (circle), 123 · 24
(boxes), and 163 ·32 lattice (diamond). The burst indicates the
extrapolated massless limit from the two lightest gluino masses

In Fig. 3 aZ−1
S mg̃ is shown together with the squared

adjoint-pion mass. The two quantities appear to vanish for
a common value of κ ≡ κc. The estimate of κc from the
SUSY Ward identity gluino mass, κc ≈ 0.1965 [13], is not
changed by the inclusion of the point on the larger lattice.
Using this value of κc we can now extrapolate the Sommer
scale parameter in Table 1 to the massless gluino situation.
A linear extrapolation results in r0/a(mg̃ = 0) = 8.4(4);
the error takes into account the uncertainty in the deter-
mination of κc (assumed to be in the region κ=0.1965–
0.1975 [13]). The Sommer scale parameter signals the de-
gree of “smoothness” (or “coarseness”) of the gauge sample.
In QCD, the present value would correspond to a ≈ 0.06
fm (3.3 GeV), a fairly fine lattice. Further, assuming that
the adjoint-pion drives the low energy features of SYM, as
the pion does in QCD, one can estimate the degree of soft-
breaking of SUSY by considering the dimensionless quan-
tity Mr = (ma−πr0)2. In QCD, validity of NLO chiral per-
turbation theory requires [21] a Mr � 0.8 (corresponding
to mud � 1/4 ms). In our case we have Mr(κ = 0.194) ≈ 16
and Mr(κ = 0.1955) ≈ 4.5; our lightest case would cor-
respond in QCD to mud ≈ 1.5 ms. Alternatively one can
consider the gluino mass from the SUSY Ward identity ne-

glecting O(1) renormalizations, again fixing the scale by the
Sommer parameter with QCD units. In this case we obtain
for our lightest gluino mg̃ ≈ 174 MeV in rough agreement
with the previous estimate. Since QCD and SU(2) SYM
are different theories, the above indications are of course of
qualitative nature. On the other hand, the relatively large
average condition numbers of the fermion matrix, ∼ 104

for κ = 0.194 and ∼ 3.6 104 for κ = 0.1955, point towards
a lighter gluino.

3 The spectrum

As explained above, we concentrate our analysis of the
spectrum on particles with spin = 0 (both parities) and
spin = 1/2. We investigate the glueball operators, the
gluino scalar and pseudoscalar bilinears (meson-type op-
erators) and the gluino-glue operator.

3.1 Spin-1/2 bound states

We adopt here a lattice version [13] of the gluino-glue
operator trc[Fσλ] where the field-strength tensor Fµν(x)
is replaced by the clover-plaquette operator Pµν(x):

Oα
g̃g(x) =

∑
i<j

σαβ
ij trc

[
Pij(x)λβ(x)

]
; (7)

only spatial indices are taken into account in order to avoid
links in the time-direction. The clover-plaquette operator
is defined to be

Pµν(x) =
1

8ig0

4∑
i=1

(
U (i)

µν (x) − U (i)†
µν (x)

)
(8)

with

U (1)
µν (x) = U†

ν (x)U†
µ(x + ν̂)Uν(x + µ̂)Uµ(x)

U (2)
µν (x) = U†

µ(x)Uν(x − ν̂ + µ̂)Uµ(x − ν̂)U†
ν (x − ν̂)

U (3)
µν (x) = Uν(x − ν̂)Uν(x − ν̂ − µ̂)

×U†
µ(x − ν̂ − µ̂)U†

µ(x − µ̂)

U (4)
µν (x) = Uµ(x − µ̂)U†

ν (x − µ̂)U†
µ(x + ν̂ − µ̂)Uν(x) .(9)

The choice of the clover plaquette vs. the regular plaquette
as the gluonic field-strength operator in (7) is motivated
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by the correct behavior under parity and time reversal
transformations as opposed to simply Uµν(x). Because of
the spinorial character of the gluino-glue, the correlator
Cg̃g(t) has a specific structure in Dirac space. On the basis
of the symmetries of the theory, one can show [12] that only
two components are linearly independent, trD[Cg̃g(x)] and
trD[γ0Cg̃g(x)]. In our experience, the latter gives the best
signal. In order to get a better overlap with the ground
state, we apply APE smearing [22] on the link-variables
and Jacobi smearing [23] on the gluino field simultaneously.

3.2 0− bound states

The meson-type correlators require a separate discussion
because of the disconnected contribution. In the case of
SYM one has (with ∆ the gluino propagator):

Cmeson(x0 − y0) = Cconn(x0 − y0) − Cdisc(x0 − y0)

=
1
Vs

∑
x

〈tr[Γ∆x,yΓ∆y,x]〉 (10)

− 1
2Vs

∑
x

〈tr[Γ∆x,x] tr[Γ∆y,y]〉 ,

with Γ ∈ {1, γ0} (observe the factor 1/2 reflecting the
Majorana nature of the gluino). The disconnected term
requires the estimation of the time-slice sum of the gluino
propagator

Sαβ(x0) =
∑
x

trc[∆xα,xβ ] . (11)

For this, we use the stochastic estimator technique
(SET) [14] with complexZ2 noise in the spin explicit variant
SEM [19]. In this case each estimate of the time-slice sum
is obtained by inverting the fermion-matrix with source
(ω[α]

S )xbβ = δαβ η
[α]
xb where η

[α]
xb are independent stochastic

variables chosen at random from 1√
2
(±1 ± i). Here we use

point-like operators (i.e., no smearing on the gluino).
On the larger 163 ·32 lattice the computed meson corre-

lator displays an offset: its long-time behavior is not purely
exponential, since a constant term also appears. Such a con-
stant term is theoretically excluded in the correlator by the
symmetries of the theory. It is present in both SET and
VST (see below) determinations of the disconnected con-
tribution and does not decrease by increasing the number
of the random estimators. In contrast, it is absent in the
connected correlator. We conclude that its origin is to be
traced to some cumulative numerical effect in the stochastic
computation of the disconnected contribution.

In Fig. 4 we show the disconnected component of the
pseudoscalar meson correlator after subtraction of the con-
stant term. In Fig. 5 the ratio between the subtracted dis-
connected component and the connected one is reported.
For a comparison with the same quantity in the case of
QCD see e.g., [24,25]; we remark here that the case of SYM
is quite different since the connected correlator is not re-
lated to a physical particle, but rather to the pseudoparticle
a − π discussed above.
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Fig. 4. The disconnected component of the pseudoscalar meson
correlator after subtraction of the constant term on the 163 ·32
lattice, κ = 0.194 (SET)
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Fig. 5. Ratio of the disconnected (after subtraction) and con-
nected components of the pseudoscalar meson correlator on the
163 · 32 lattice, κ = 0.194 (SET)

We cross-check the SET with the improved version [15]
of the volume source technique (VST) [16], applying to
fermions in real representations of the color group. The
improvement consists in averaging the time-slice sums over
random gauge transformations and therefore eliminating
the gauge non-invariant spurious terms. The two methods
deliver consistent results of comparable quality at similar
computational cost. For the sake of brevity, we present here
only those from SET.

Another operator with the right quantum numbers (0−)
is the pseudoscalar glueball operator. This is given by a
linear combination of closed loops of link variables which
cannot be rotated into their mirror image (cf. e.g., [10]). We
considered the simplest loops of this kind. Unfortunately
this operator does not give a clear signal on our samples.
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Fig. 6. The effective mass of the spin-1/2 particle (γ0 component) for the different samples. Dotted lines are the bounds of
the mass fits (ground and first excited state). In the last case only a rough indication of the first excited state mass could
be obtained

3.3 0+ bound states

Since the meson-type correlator does not show any appre-
ciable signal for the 0+ state, we turn to the scalar glueball
operator. The standard operator in this case is

Oglueball(x) = trc[U12(x) + U23(x) + U31(x)] . (12)

We use fuzzy operators by applying APE smearing on the
link variables.

3.4 Results

For all particles we measured the effective masses (Figs. 6–
8). In many cases a clear plateau could not be determined.
In order to get a better determination of the ground state
mass, we used constrained two-mass fits (bounds in the
figures). In some cases (the spin-1/2 particle on the larger
lattice at κ = 0.194, Fig. 6, and the pseudoscalar particle
at the same κ value, Fig. 7) the two-mass fit can be cross-
checked against a plateau of the effective mass. We ensured
the stability of the two-mass fits by systematically varying
fit ranges (for details see [17]). The effective mass of the
pseudoscalar meson on the 163 · 32 lattice, lower panel of
Fig. 7, was determined after subtraction of the constant
term in the correlator discussed in Sect. 3.2.

In the case of the scalar glueball operator, a decrease
of the signal/noise ratio was observed on the larger lattice,
as a consequence of which no determination of the mass
was possible.
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Fig. 7. The comparison of the effective mass of the pseudoscalar
particle on the two lattices at κ = 0.194. Dotted lines are the
bounds of the mass fits (ground and first excited state)

Results on the determinations of the ground state
masses are reported in Table 2 and Fig. 9. A discussion
of the results will be presented in the following section.
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Fig. 8. The effective mass of the scalar particle
with glueball operator on the 123 · 24 lattice at
κ = 0.194, 0.1955. Dotted lines are the bounds of
one-mass fits
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Fig. 9. Mass of lightest bound states of SYM determined in this
work. The shaded region represents the presumed location of the
massless gluino on the basis of the SUSY Ward identity analysis

4 Discussion

Our analysis of the low-lying spectrum of SYM shows a
slow approach of the correlators to the asymptotic behavior
where only the ground state dominates. This is evident in
the case of the gluino-glue and mesonic correlators; in the
case of the glueball correlator, the quality of the signal
is not good enough to make definite statements. Excited
states with masses comparable to that of the ground state
are strongly coupled to these operators. In some cases a
plateau of the effective mass emerged and consequently
allowed us to cross-check the results of the two-mass fits.
The situation can be improved by implementing optimized
smearing on the operators (in the case of the gluino bilinears
we use point-like operators).

The excited states which hamper the determination of
the ground states are of physical interest by themselves.
According to [2, 4, 5], the first excited states should be
arranged in a second Wess-Zumino supermultiplet. The
“higher masses” in our two-mass fits can give a first in-
dication of the masses of these excited states: the ground
state masses lie in the region 0.2–0.5 (in lattice units), while
the higher masses are in the region 0.8–1. A more refined
analysis of the excited states, however, could be obtained
with matrix correlators. In the scalar sector, one would nat-
urally include the gluino scalar bilinear in addition to the
glueball operator. Given the large fluctuations observed on

the former, the employment of variational methods would
then be advisable. A similar analysis could be done in the
pseudoscalar sector with the corresponding gluino bilinear
and the pseudoscalar glueball operator.

A more fundamental question is whether the employed
operators are optimal in the sense of maximal overlap with
the low-lying bound states of SYM. Investigations could go
in the direction of different operators and different quantum
numbers [26].

In the following we restrict the discussion of our results
to the ground states (Fig. 9). One of the goals of this study
was to check finite volume effects by comparing lattices
with different spatial extension. This can be done for our
value of κ = 0.194 where two different lattice sizes are
available, Ls = 12 and 16. The direct comparison shows,
see Table 2, that a sizeable deviation is present for the
pseudoscalar particle. Contrary to expectations, the parti-
cle comes in heavier on the larger lattice. For this lattice,
however, an unexpected constant term is observed in the
long-time behavior of the correlator, which could hint at
some systematic effect in the stochastic determination of
the disconnected correlator on large lattices. The pseu-
doscalar particle is the lightest particle for our lightest
gluino (κ = 0.1955), though, in this case only data for the
smaller lattice are available. The scalar and the spin-1/2
particle have comparable masses, compatible within errors.

Conclusions on the relevance of soft breaking terms
require the control of finite lattice-spacing effects. Using
analogy with QCD in absence of other indications, we argue
that our mesh is relatively fine, while the gluino is still quite
heavy. Next steps will be therefore to consider larger values
of κ on large lattices.
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